You updated your password.

Reset Password

Enter the email address you used to create your account. We will email you instructions on how to reset your password.

Forgot Your Email Address? Contact Us

Reset Your Password

SHOW
SHOW

Understanding the World's Greatest Structures

Take a unique tour of our world's most remarkable and enduring structural masterpieces and learn why these architectural wonders stand the test of time.
Understanding the World's Greatest Structures is rated 4.9 out of 5 by 372.
  • y_2022, m_11, d_27, h_21
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.34
  • cp_1, bvpage1
  • co_hasreviews, tv_12, tr_360
  • loc_en_CA, sid_1153, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getAggregateRating, 34.11ms
  • REVIEWS, PRODUCT
Rated 5 out of 5 by from Brilliantly designed and presented As a civil engineer, I greatly enjoyed this course. And I learned a great deal! The depth of detail is amazing and very well researched.
Date published: 2022-11-15
Rated 5 out of 5 by from Expected to be boring but the exact opposite The full benefit of this course is achieved at in the later lectures, especially tension structures but others too. Dr. Ressler has the artist's appreciation of the beauty of structural forms which he combines with the precision of a hands-on engineer. A third string he has is a very humane understanding of the human side of engineering creativity.
Date published: 2022-11-12
Rated 5 out of 5 by from Highly worthwhile course! This is an excellent course for anyone at all interested in architecture and construction. The format is well presented. The first several lecture deal with how various structural elements function and are presented with well made models. Then beginning with antiquity and up to modern times, structures are presented and analyzed in light of the structural elements already presented. It's a highly interesting course.
Date published: 2022-10-28
Rated 5 out of 5 by from Why structures look like they do - a superb course I bought this course on the strength and superb quality of a different course presentated by Prof Ressler, which was excellent and I enjoyed very much (and learnt a fair bit). Prof. Resslers builds the content this course from the basic to the more advanced in a logical, step-by-step way. A superb journey from the basic underlying physics to real-life examples how physics and maerial sciences determined the ultimate structure of our world, or at least of our buidings. A word of warning - because of the logical build-up of the subject it is very diffcult to jump into a random lesson of the course. It is best watched in order. Prof Ressler's presentation is clear and esy to listen to, explanations are supported by excellent presentatations or practical examples. A course I would certainly recommend strongly to anybody with an interest in engineering. Or just for the enjoyment of the the lectures.
Date published: 2022-10-27
Rated 5 out of 5 by from Excellent lectures The lectures take us through the progress of building techniques and structures resulting from discoveries of new building materials. The lectures were given in a very engaging and interesting way by Prof Ressler.
Date published: 2022-10-14
Rated 5 out of 5 by from Demonstration of concepts and princpIes I have nothing to add to the enthusiastic reviews this course has received, except that it is salutary to encounter engineering theory and practice because is should be a solvent of all ideologies whether political or religious or corporate, that have enjoyed currency in recent times where rigid minds have imposed ideas without cogent and coherent authority. I recommend this course and the more recent 'Epic Failings in Engineering. These courses should be a cogent argument in favour of a broad curriculum before allowing over specialisation. They would serve to disabuse Scientists and Humanities and Social Scientists of the dangers of that species of arrogance that issues from Ignorance. Professor Resslers courses are not merely authoritative, but also compelling, engaging, and potent
Date published: 2022-10-03
Rated 5 out of 5 by from Exceptional presenter I watched this course primarily because Dr. Ressler was the presenter. Several years ago, I watched his "Everyday Engineering" and I still often remember something he discussed. He has a very clear way of explaining complex ideas that stick with you and the models he brought to help describe the lessons in this course were very helpful. I don't pass a bridge now without trying to figure out its structure.
Date published: 2022-07-31
Rated 5 out of 5 by from Great lecturer Stephen Ressler is the kind of professor I would listen to for many hours.
Date published: 2022-07-26
  • y_2022, m_11, d_27, h_21
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.34
  • cp_1, bvpage1
  • co_hasreviews, tv_12, tr_360
  • loc_en_CA, sid_1153, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 5.69ms
  • REVIEWS, PRODUCT

Overview

Experience the engineering genius that makes works such as the Giza pyramids, Brunelleschi's dome, and the Brooklyn Bridge possible with Understanding the World's Greatest Structures: Science and Innovation from Antiquity to Modernity. Delivered by award-winning Professor Stephen Ressler, these 24 lectures take you on a richly illustrated tour that deftly blends history and science to create an unforgettable survey of our world's most remarkable structural masterpieces. This course is a marvelous learning experience that takes you around the world and reveals the stories behind the most famous bridges, churches, skyscrapers, towers, and other structures from thousands of years of history.

About

Stephen Ressler

In over two decades as a teacher, I've never experienced anything quite like commitment of The Great Courses to rigor in the course development process and uncompromising production quality in the studio.

INSTITUTION

United States Military Academy, West Point

Stephen Ressler is a Professor Emeritus from the United States Military Academy at West Point, where he taught for 21 years. He holds an MS and PhD in Civil Engineering from Lehigh University and is a registered professional engineer in Virginia. He served in a variety of military engineering assignments in the United States, Europe, and Central Asia. He has focused his scholarly and professional work on engineering education and has won numerous national awards for engineering education and service.

By This Professor

Understanding the World's Greatest Structures
854
Everyday Engineering: Understanding the Marvels of Daily Life
854
Do-It-Yourself Engineering
853
Understanding Greek and Roman Technology
854
Epic Engineering Failures and the Lessons They Teach
854
Understanding the World's Greatest Structures

Trailer

Learning to See and Understand Structure

01: Learning to See and Understand Structure

How are ideas for buildings, bridges, and towers transformed from sketches to concrete reality? What are the three essential qualities that make a structure great? What's the difference between seeing a structure and actually understanding it? Discover the answers to these and other questions in this introductory lecture.

34 min
The Science of Structure—Forces in Balance

02: The Science of Structure—Forces in Balance

Explore how two types of external forces—loads (forces applied to structures) and reactions (forces developed at supports, in response to applied loads)—act on structures such as Kansas City's Chouteau Bridge. Also, learn how these forces are related to the most important concept in engineering mechanics: equilibrium.

33 min
Internal Forces, Stress, and Strength

03: Internal Forces, Stress, and Strength

Use the Simple Tension Test (pulling on a structural element until it reaches the breaking point) as a gateway to understanding the concepts of internal force, stress, and strength. Then, see these concepts at work in structures such as the Golden Gate Bridge and Athens' Olympic Velodrome.

32 min
From Wood to Steel—Properties of Materials

04: From Wood to Steel—Properties of Materials

Materials profoundly influence the form, function, and structure of great buildings, bridges, and towers. Using steel (which is superior in terms of strength, ductility, and stiffness) as a benchmark, compare the structural properties of wood, masonry, concrete, and iron—and see them at work in thousands of years' worth of structures.

31 min
Building Up—Columns and Buckling

05: Building Up—Columns and Buckling

One of the most potent human aspirations supported by engineering is to build up. Learn how this has been done from antiquity to the present with columns—structural members that carry load primarily in compression. You'll also learn about buckling: the often catastrophic stability failure that occurs in columns with certain geometric characteristics.

32 min
Building Across—Beams and Bending

06: Building Across—Beams and Bending

Beams, combining tension and compression, are central to the second aspiration supported by engineering: building across long distances. As you survey beams from the primitive lintel over the Lion Gate at Mycenae to Norway's Raftsundet Bridge, you'll investigate scientific developments and transform your understanding of what makes this structural element possible.

32 min
Trusses—The Power of the Triangle

07: Trusses—The Power of the Triangle

Trusses, the subject of this fascinating lecture, are rigid frameworks composed of structural members connected at joints and arranged into networks of triangles. Learn how they work to stabilize and support a range of structural wonders, including the Brooklyn Bridge and—most famously—the Eiffel Tower.

32 min
Cables and Arches—The Power of the Parabola

08: Cables and Arches—The Power of the Parabola

In this lecture, Professor Ressler introduces you to two final structural elements: cables and arches. The Saint Louis Gateway Arch and the cables of the Golden Gate Bridge are just two examples of breathtaking structural features that also have extensive, occasionally surprising, parallels.

31 min
Loads and Structural Systems

09: Loads and Structural Systems

Structures are heavily influenced by the loads they're designed to carry. First, take a closer look at the most important loads structures must resist, including traffic loads and earthquake loads. Then, using the historic iron building at Watervliet Arsenal in New York, analyze how loads are actually transmitted through structural systems along load paths.

31 min
Egypt and Greece—Pyramids to the Parthenon

10: Egypt and Greece—Pyramids to the Parthenon

Embark on your tour of different types of structures from around the world and across time. Your first stop: ancient Egypt, and the surprisingly complex engineering of pyramids, including the Great and Red pyramids. Your second stop: ancient Greece, where you visit the domed Treasury of Atreus and break down the structural system of the Parthenon.

31 min
The Glory of Rome in Arches and Vaults

11: The Glory of Rome in Arches and Vaults

Learn why the arch is the principal structural feature of ancient Rome. Your detailed case studies range from simple bridges such as the Pont St. Martin and triumphal arches such as the Arch of Titus to massive aqueducts like the Pont du Gard and majestic public spaces like the Baths of Caracalla.

33 min
The Rise and Fall of the Gothic Cathedral

12: The Rise and Fall of the Gothic Cathedral

Gothic cathedrals are lasting testaments to the power of a series of sweeping architectural developments in medieval Europe. After examining the roots of Gothic cathedrals in their Romanesque predecessors, focus on several structural innovations—including flying buttresses and pointed arches—at work in places such as France's Chartres Cathedral.

33 min
Three Great Domes—Rome to the Renaissance

13: Three Great Domes—Rome to the Renaissance

Trace the dome's evolution from the 1st century A.D. to the Renaissance. It's a journey reflected in the increasingly sophisticated domes of three great structures: the ancient Roman Pantheon, the Byzantine-era basilica of Hagia Sophia in Istanbul, and the Renaissance-era dome over the Florence cathedral of Santa Maria del Fiore.

34 min
How Iron and Science Transformed Arch Bridges

14: How Iron and Science Transformed Arch Bridges

Examine the development of arched bridges during and after the Industrial Revolution. See how the revolutionary Iron Bridge at Coalbrookdale paved the way for the development of science-based engineering. Also, see how science contributed to increasingly sophisticated modern bridges such as Spain's Campo Volantin Bridge.

29 min
Suspension Bridges—The Battle of the Cable

15: Suspension Bridges—The Battle of the Cable

After learning the science behind suspension bridges, begin your two-lecture look at these structural marvels. Here, relive the "Battle of the Cable," in which 19th-century engineers struggled over whether to build suspension cables from iron chains (as in England's Menai Strait Bridge) or steel wire (as in the Brooklyn Bridge).

33 min
Suspension Bridges—The Challenge of Wind

16: Suspension Bridges—The Challenge of Wind

In July 1940, the Tacoma Narrows Bridge dramatically collapsed in a steady 42-mph wind. In this concluding lecture on suspension bridges, focus on how the Brooklyn Bridge, the Severn Bridge, and other bridges were designed to combat the second great challenge of these record-breaking bridges: their vulnerability to wind-induced vibrations.

31 min
Great Cantilever Bridges—Tragedy and Triumph

17: Great Cantilever Bridges—Tragedy and Triumph

Professor Ressler shows how structural catastrophes produced two bridges that provide a wonderful opportunity to see and understand structure: Scotland's Firth of Forth Bridge and Canada's second Quebec Bridge. You'll also gain insights into the human element of engineering, and the reasons structures turn out the way they do.

32 min
The Rise of Iron- and Steel-Framed Buildings

18: The Rise of Iron- and Steel-Framed Buildings

How did iron and steel revolutionize building design? Find out in this trip back to late 18th- and early 19th-century Europe and America, where iron-framed structures-such as sheds at England's Chatham Dockyard, New York City's Equitable Life Insurance Building, and Chicago's First Leiter Building-would set the stage for modern skyscrapers.

32 min
The Great Skyscraper Race

19: The Great Skyscraper Race

The human aspiration to build upward reaches its climax with the skyscraper. Learn the story behind America's "great skyscraper race" and the increasingly sophisticated buildings it produced. Among the structural masterpieces you examine in depth are the Wainwright Building, the Chrysler Building, the Willis Tower, and the World Trade Center towers.

30 min
The Beauty and Versatility of Modern Concrete

20: The Beauty and Versatility of Modern Concrete

Concrete, the world's most commonly used construction material, has been used in buildings that are anything but common. See concrete's versatility at work in an incredible range of structures, including Frank Lloyd Wright's Fallingwater, the Salginatobel Bridge in the Swiss Alps, and Dubai's Burj Khalifa (currently the world's tallest building).

33 min
Amazing Thin Shells—Strength from Curvature

21: Amazing Thin Shells—Strength from Curvature

Thin shells are unique structural elements that use curvature—cylindrical, dome-like, or saddle-like—to attain strength and stiffness. See these three types of thin shells used creatively in buildings ranging from St. Paul's Cathedral in London to the Zeiss planetarium in Germany to the Trans World Flight Center at New York's JFK Airport.

30 min
Vast Roof Systems of Iron and Steel

22: Vast Roof Systems of Iron and Steel

The need for roofs spanning large enclosed spaces led to a startling number of new structural systems in the last 200 years. Look closer at long-span structural configurations in places such as the Houston Astrodome, the Berlin Hauptbahnhof, and even the Hartford Civic Center (the collapse of which offers a lesson in the risks of innovation).

32 min
The Incredible Lightness of Tension Structures

23: The Incredible Lightness of Tension Structures

Apply old concepts in new ways with this lecture on tension structures, where all the principal load-carrying elements are in tension. Explore noteworthy examples, from the cable-supported roof of North Carolina's J. S. Dorton Arena to the suspended dish roof of Madison Square Garden to the cable dome of South Korea's Olympic Gymnastics Hall.

32 min
Strategies for Understanding Any Structure

24: Strategies for Understanding Any Structure

What happens when you encounter a noteworthy structure that hasn't been included in this course and you want to know more about it? Professor Ressler devotes his final lecture to answering this question; sending you out into the world with suggested strategies for understanding any structure—great or otherwise.

32 min