Understanding Modern Electronics

Delve into the fascinating world of electrons and see how mankind has harnessed their power to create devices that only decades ago seemed like science fiction.
Understanding Modern Electronics is rated 4.4 out of 5 by 150.
  • y_2021, m_6, d_18, h_18
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.17
  • cp_1, bvpage1
  • co_hasreviews, tv_19, tr_131
  • loc_en_CA, sid_1162, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getAggregateRating, 32.06ms
  • REVIEWS, PRODUCT
Rated 5 out of 5 by from Course with steep learning curve Best course from TGC. I am a professional and dealing with electronic circuits for about 20 years. The course gives you a basic background, but lacks several important circuits such as wireless comm - both short and long range. Lab experiments weren't upclose, and files for CircuitLab were not included. Teaching Company could provide a list to all electronic components when Prof Wolfson talks about 'em.
Date published: 2021-06-04
Rated 5 out of 5 by from A Pleasure to watch and learn. As a recent graduate with a Masters in Electrical and Electronic Engineering, I found this course to be fantastic. If only my lectures at University were taught in such a clear manner. Richard presents this at just the right speed and with just the correct amount of information to learn. Totally enjoyable. :-)
Date published: 2021-04-04
Rated 1 out of 5 by from He makes too many errors If you have no electronics experience you won't notice but he makes way too many errors for example there are two symbols for a capacitor the electrolytic ones are polarized and he did not mention this nor did he explain that or show the symbol. glosses over important concepts such as Ohms law and does not explain it well. i am only on lesson four and am unimpressed i certainty would not buy the course.
Date published: 2021-03-29
Rated 5 out of 5 by from Excellent overview of electronics I really enjoyed this overview. The guidebook is very well made as well and I appreciated all the good references. Thank you!!
Date published: 2020-11-03
Rated 5 out of 5 by from Very clear explanations I like to teacher a lot! it does explain ideas very clear and in a friendly way.
Date published: 2020-10-10
Rated 3 out of 5 by from First Impression... Lesson 2 has a typo showing the symbol for much greater than (>>) pointing the wrong way. It doesn't bode well for the other 23 lectures.
Date published: 2020-09-02
Rated 5 out of 5 by from Understanding Modern Electronisc Clear concise explanations, worthwhile tutorials, great graphics.
Date published: 2020-08-12
Rated 5 out of 5 by from Helped me understand electric circuits better! My simple but big takeaway: an electronic circuit is a circuit that controls another circuit. The principle may be applied to immune systems, business rules that control business processes and communications systems.
Date published: 2020-07-10
  • y_2021, m_6, d_18, h_18
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.17
  • cp_1, bvpage1
  • co_hasreviews, tv_19, tr_131
  • loc_en_CA, sid_1162, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 5.12ms
  • REVIEWS, PRODUCT

Overview

Electronic devices are fundamental to our global economy, improve our lives immeasurably, and underlie virtually every aspect of modern life. Yet very few of us have any idea of how electronic devices actually work. In fact, these increasingly complex devices operate on a few basic principles that are both fascinating and easy to understand. Now, in 24 clear and accessible lectures, award-winning Professor of Physics Richard Wolfson of Middlebury College provides a working explanation of the principles that govern electronic circuits, then shows these principles in action with devices you use every day. By leaving much of the rigorous mathematics to the textbooks, your education in modern electronics will take a practical approach suitable for the aspiring engineer, the enthusiastic tinkerer, or the curious intellectual. Understanding Modern Electronics will demystify the behavior and inner circuitry of electronic devices and inspire you to see technology in a whole new light.

About

Richard Wolfson
Richard Wolfson

Physics explains the workings of the universe at the deepest level, the everyday natural phenomena that are all around us, and the technologies that enable modern society. It's an essential liberal art.

INSTITUTION

Middlebury College

Dr. Richard Wolfson is the Benjamin F. Wissler Professor of Physics at Middlebury College, where he also teaches Climate Change in Middlebury's Environmental Studies Program. He completed his undergraduate work at MIT and Swarthmore College, graduating from Swarthmore with a double major in Physics and Philosophy. He holds a master's degree in Environmental Studies from the University of Michigan and a Ph.D. in Physics from Dartmouth.

Professor Wolfson's published work encompasses diverse fields such as medical physics, plasma physics, solar energy engineering, electronic circuit design, observational astronomy, theoretical astrophysics, nuclear issues, and climate change. His current research involves the eruptive behavior of the sun's outer atmosphere, or corona, as well as terrestrial climate change and the sun-Earth connection.

Professor Wolfson is the author of several books, including the college textbooks Physics for Scientists and Engineers, Essential University Physics,and Energy, Environment, and Climate. He is also an interpreter of science for the nonspecialist, a contributor to Scientific American, and author of the books Nuclear Choices: A Citizen's Guide to Nuclear Technology and Simply Einstein: Relativity Demystified.

By This Professor

Understanding Modern Electronics

Trailer

Electricity and Electronics

01: Electricity and Electronics

What is the difference between electricity and electronics? Begin your study of modern electronics by examining this distinction, and observe how electronics use the basic properties of electric circuits in a more sophisticated way. Witness firsthand how resistance is described with Ohm's law, and learn how to measure electric power.

35 min
Circuits and Symbols

02: Circuits and Symbols

Meet the battery! This lecture marks your introduction to circuit diagrams, displaying the interconnected assemblages of electronic components that make a circuit function. Learn how to decipher these drawings, and see how components assembled in series or in parallel may interact differently depending on their configuration.

33 min
Instruments and Measurement

03: Instruments and Measurement

As you grow familiar with physical properties of electric circuits, become acquainted with the instruments used to measure these quantities: voltmeters, ammeters, ohmmeters, multimeters, and the oscilloscope. See how each of these instruments interacts with a circuit to test circuit behavior or measure quantities that may vary over time.

48 min
AC versus DC

04: AC versus DC

Examine the nuances of alternating and direct currents, see how transformers use electromagnetic induction to transform voltage levels in AC circuits, and observe the role of diodes and capacitors in regulating current. See how the DC power supplies that charge our cell phones are constructed so that they convert alternating to direct current.

38 min
Up the Treble, Down the Bass!

05: Up the Treble, Down the Bass!

From familiar audio equalizers we use to crank the bass or reduce hiss, to cell phone towers that need to separate calls coming in on adjacent channels, filtering electronic signals is often essential. Dive further into the critical role that capacitors play in electronic filters.

34 min
Semiconductors-The Miracle Material

06: Semiconductors-The Miracle Material

Semiconductors make possible the transistors at the heart of electronics, including integrated circuits and computers. Learn how the atomic configuration of semiconductors makes them unique, and how engineers adjust their properties to make two types of semiconductors-P and N. Witness the critical role that PN-junctions play in semiconductor devices.

36 min
Transistors and How They Work

07: Transistors and How They Work

Transistors in all forms fundamentally do the same thing: they allow one electronic circuit to control another. Review the concept of electronic control, and study field effect transistors (FETs) as well as bipolar junction transistors (BJTs). See how the bipolar junction transistor can be used as a simple switch.

35 min
Transistors as Amplifiers

08: Transistors as Amplifiers

Discover how transistors can be used to increase voltage, current, or power of an electronic signal while faithfully reproducing the signal's time variation. See how biasing and load-line analysis play key roles in amplifiers, and help prevent distortion. Learn to design a simple one-transistor audio amplifier that increases the voltage of audio-frequency signals.

37 min
Building an Audio Amplifier

09: Building an Audio Amplifier

Put your knowledge to use by building a complete audio amplifier. First, create a two-stage amplifier, then add capacitors to increase the amplification, or gain. Add a power output stage to drive a loudspeaker. Finally, add a volume control. In addition, learn how biasing with diodes can eliminate a subtle form of distortion.

35 min
The Ideal Amplifier

10: The Ideal Amplifier

Learn why large gain-infinite gain, in fact-as well as low output resistance and high input resistance are characteristics of the ideal amplifier. See how an integrated-circuit operational amplifier, or "op-amp," puts all these things together and also how the op-amp can be used as a simple comparator.

38 min
Feedback Magic

11: Feedback Magic

Define what "feedback" means in electronics, and how it can be used in a circuit. Learn how negative feedback utilizes communication between the output and input of an amplifier, and how operational amplifiers use this phenomenon to create thought-controlled robotic arms, intelligent light bulbs, and optical tracking systems.

33 min
Electronic Feedback

12: Electronic Feedback

Understand the math behind two basic rules that allow op-amps to leverage the magic of negative feedback: no current flows into op-amp inputs, and with negative feedback, V+ = V -. See how these rules allow op-amps to tame near-infinite gain in a circuit down to the exact amplification you want.

36 min
Amplifier Circuits Using Op-Amps

13: Amplifier Circuits Using Op-Amps

Now that the versatility of negative feedback has been demonstrated, adjust the strength of negative feedback in op-amp circuits to build amplifiers with whatever gain you choose. Create an amplifier that sums two or more inputs, see a circuit that converts current to voltage, and explore the design and operation of an op-amp-based light meter.

36 min
More Fun with Op-Amps

14: More Fun with Op-Amps

Explore peak detectors that "remember" the maximum voltage reached, as well as Schmitt triggers whose output retain their value until the input changes sufficiently to "trigger" a change in the output. Use these concepts to design a practical circuit: an alarm to warn if your freezer's temperature has been above freezing.

35 min
Using Op-Amps with Capacitors

15: Using Op-Amps with Capacitors

By introducing capacitors to op-amp circuits, you will see how feedback capacitors can be used to introduce time-dependent behavior such as gradual voltage increases, and to generate useful waveforms. Learn in the process how op-amp circuits with capacitors can perform the mathematical operation called integration.

36 min
Digital Versus Analog

16: Digital Versus Analog

Explore the difference between the analog and digital realms. Learn how the two states "0" and "1" can be used to represent numbers or textual information. Enter the digital age with binary numbers and operations that are the basis of computer logic, and discover logic gates and their truth tables for common logical operators.

37 min
Electronics Goes Digital

17: Electronics Goes Digital

See how distinctly different electrical circuits can implement basic logic operations, and how simple logic gates come together to form complex logic circuits, ultimately including computers. Return to transistors to see how both BJTs and MOSFETs are used to implement logic gates, the latter in an arrangement called Complementary Metal Oxide Semiconductor (CMOS).

40 min
Flip-Flop Circuits

18: Flip-Flop Circuits

By combining logic gates and positive feedback, obtain circuits with two stable states. These "flip-flop" circuits "remember" their current states until they are forced into the opposite state. Learn the inner workings of several types of flip-flops as they lay the foundations for memory circuits.

34 min
Shift and Divide-Your USB and Your Watch

19: Shift and Divide-Your USB and Your Watch

Learn how electronic devices "talk" to each other by using flip-flops to send computer "words" one bit at a time, and observe how recipient devices reassemble incoming bits using serial-to-parallel conversions. See how Universal Serial Bus (USB) connections transmit communications between devices, and how the T flip-flop is utilized as a frequency divider in quartz watches.

38 min
Digital Memory

20: Digital Memory

Examine the circuits that enable your devices to "remember" everything from contact information to your browsing history to the keystrokes you type on your computer. Compare random-access memory versus sequential memory as well as volatile and non-volatile memory.

38 min
Digital Counters

21: Digital Counters

Flip-flops can be connected together to create counting circuits. Examine the circuitry behind 2-bit, n-bit, and decade counters, then see how the interruption of a light beam can be used in conjunction with such a circuit to keep count of people walking by or products moving along an assembly line.

39 min
Digital to Analog

22: Digital to Analog

Because we live in an analog world-sound, time, temperature, speed, and light are all analog phenomena-it's important to be able to convert outputs of digital circuits into analog signals that we can perceive. Discover two digital-to-analog converters (DACs): weighted-resistor DACs, and the delta-sigma DACs that provide high-resolution audio for our smartphones and mp3 players.

36 min
Analog to Digital

23: Analog to Digital

Observe how circuit designers have formulated a wide array of schemes for converting analog signals to digitally encoded information. See how flash converters, integrating converters, and feedback converters use very different methods to accomplish the same goal, and weigh the situational costs and benefits of each.

39 min
Your Future in Electronics

24: Your Future in Electronics

With some final tips, an introduction to the microcontroller, and a demonstration of an amazing circuit aimed at improving the efficiency of photovoltaic panels, Professor Wolfson leaves you with an enhanced appreciation for the complexity of essential modern electronics. You are now well equipped to embark on your own journey through the fascinating world of electronics!

35 min