You updated your password.

Reset Password

Enter the email address you used to create your account. We will email you instructions on how to reset your password.

Forgot Your Email Address? Contact Us

Reset Your Password

SHOW
SHOW

Thermodynamics: Four Laws That Move the Universe

Delve into the fascinating and enormously important subject of thermodynamics and discover the four laws that govern so much of the world around us.
Thermodynamics: Four Laws That Move the Universe is rated 4.4 out of 5 by 105.
  • y_2022, m_7, d_3, h_21
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.32
  • cp_1, bvpage1
  • co_hasreviews, tv_12, tr_93
  • loc_en_CA, sid_1291, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getAggregateRating, 7.39ms
  • REVIEWS, PRODUCT
Rated 5 out of 5 by from Outstanding I have bought several courses from your company. As old ChE with 2 degrees, I just wish I had Dr Grossman back in Engineering school. Absolutely wonderful. Exciting, straightforward, clever demonstrations, enthusiastic presenter. So many hours of mental pain I could have saved. Course is good for undergraduates, graduates plus experienced engineers. Fun learning.
Date published: 2022-06-15
Rated 5 out of 5 by from Thermodynamics: energy in nature This course provides an intuitive understanding of the fundamentals of energy conservation, transfer and directional reactions in nature. This understanding is backed by some simple lab experiments to illustrate the impact of energy transfers on materials. The course, to its credit, is not shy of calling mathematics to establish the relationships between internal internal energy, work and heat further used in the definition of entropy. I measure the quality of a course to the stimulation of observation and thinking it induces in me, and it does it a lot !
Date published: 2022-06-12
Rated 5 out of 5 by from Very complete and very relevant I have taught thermodynamics for university chemistry majors for a number of years and I still learned new things from this course. The emphasis on phase diagrams is very appropriate and helps make the link between thermodynamics and modern materials. Dr. Grossman is a materials scientist and as such brings a unique focus to this topic.
Date published: 2022-06-01
Rated 5 out of 5 by from Great Course; good lab experiments This was a great course that filled in many gaps in my knowledge of physics. Dr. Grossman had many entertaining and helpful experiments to embellish his very polished lectures. I greatly enjoyed this course!
Date published: 2021-11-11
Rated 5 out of 5 by from Demo maniac! (In a good way) Lots of fun watching most of the lectures, with the critical eye of an old thermo instructor. I used to like giving demos to lighten the mood, and Grossman is at his best doing this. I particularly liked the green eggs. One can always quibble, but this is about as interesting as it is possible to make introductory thermodynamics.
Date published: 2021-10-29
Rated 5 out of 5 by from Great great experiments I was doing this as a refresher and also because I was never clear on thermodynamics. Enthalpy, Gibb’s energetic were always just combinations of variables, never clear why they were needed. This course really gave me the gut feel for all that. Really enjoyed the experiments. This lecturer takes care to explain the fundamentals. I am so glad he used math. Once cannot explain the depth without math, anyone taking these courses will know math so use it!! I guess Great courses is now allowing math? I only wish that the equations and some concepts were included in the booklet.
Date published: 2021-07-20
Rated 4 out of 5 by from Thermodynamics Overall I am quite satisfied with with content and instructors. My two minor complaints are video and textbook guide. During delayed replay audio sync is not synchronized. (Sometimes). Textbook guide should have a subject index (like a pdf) to eliminate scrolling to locate your subject location. Thank you, Harry Youmans
Date published: 2021-07-12
Rated 5 out of 5 by from The title drew one in for my expectations I had a Physical Chemistry course many years ago, and my wonderment of the basic heat-energy relation that was driven by the stem engine developments about 200 years prior. Prof. Grossman went deep which the area I wondered about occasionally but couldn't go deep.
Date published: 2021-07-09
  • y_2022, m_7, d_3, h_21
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.32
  • cp_1, bvpage1
  • co_hasreviews, tv_12, tr_93
  • loc_en_CA, sid_1291, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 4.54ms
  • REVIEWS, PRODUCT

Overview

Thermodynamics is the branch of science that deals with the movement of heat. Nothing seems simpler, but nothing is more subtle and wide-ranging in its effects. And nothing has had a more profound impact on the development of modern civilization. Thermodynamics: Four Laws That Move the Universe gives you an in-depth tour of this vital and fascinating science in 24 enthralling lectures that are suitable for everyone from science novices to experts who wish to review elementary concepts and formulas. Your teacher is Professor Jeffrey C. Grossman of the Massachusetts Institute of Technology, a scientist at the forefront of research on new materials.

About

Jeffrey C. Grossman

The Sun is the opposite of a laser. If it were a laser, we'd have an easier time making solar cells because we could tailor our converters of light energy to one specific wavelength.

INSTITUTION

Massachusetts Institute of Technology

Dr. Jeffrey C. Grossman is Professor in the Department of Materials Science and Engineering at the Massachusetts Institute of Technology (MIT). He earned his B.A. in Physics from Johns Hopkins University and his M.S. in Physics and his Ph.D. in Theoretical Physics from the University of Illinois at Urbana-Champaign. Before joining MIT, Professor Grossman founded and headed the Computational Nanoscience research group at the University of California, Berkeley, which focused on designing new materials for energy applications. At MIT, he heads a research group devoted to understanding, predicting, and designing novel materials with applications in energy conversion, energy storage, and thermal transport. As a Lawrence Fellow at the Lawrence Livermore National Laboratory, he received the Physics Directorate Outstanding Science and Technology Achievement Award. He was also awarded a coveted Sloan Fellowship soon after joining MIT. Professor Grossman's current research centers on the development of new solar thermal fuels, the design of nano-scale technologies for sequencing DNA in hours, three-dimensional photovoltaic panels, new materials to convert waste heat into electricity, and more. He has also developed entirely new ways to encourage idea generation and creativity in interdisciplinary science, including 'speedstorming,' a method of pair-wise idea generation that works similarly to a round-robin 'speed-dating' technique.

By This Professor

Thermodynamics: Four Laws That Move the Universe
854
Thermodynamics: Four Laws That Move the Universe

Trailer

Thermodynamics-What's under the Hood

01: Thermodynamics-What's under the Hood

Starting with the example of cooked food, see how thermodynamics governs all processes that use energy to transform materials-whether the product is a pan of brownies or a cell phone. Preview the course by imagining what it would take to build modern technological civilization from scratch.

32 min
Variables and the Flow of Energy

02: Variables and the Flow of Energy

Chart the key historical milestones in the development of thermodynamics. Then compare macroscopic and microscopic views of the world, and consider how the relationship between a material's properties, structure, performance, and processing can be represented by the four corners of a tetrahedron.

29 min
Temperature-Thermodynamics' First Force

03: Temperature-Thermodynamics' First Force

Analyze the most central idea of thermodynamics: temperature. Investigate the origin of different temperature scales and the various methods for measuring temperature. See how the concept of temperature is a consequence of the zeroth law of thermodynamics, which deals with the nature of thermal equilibrium.

33 min
Salt, Soup, Energy, and Entropy

04: Salt, Soup, Energy, and Entropy

Explore other basic concepts that are critical to thermodynamics. These include the idea of a system, boundary conditions, processes that occur within systems, the meaning of the state of a system, the definition of equilibrium, and a much-misunderstood quantity called entropy.

31 min
The Ideal Gas Law and a Piston

05: The Ideal Gas Law and a Piston

Understand how pressure, volume, and temperature are state functions related by a formula known as the ideal gas law. Contrast these variables with work and heat, learning why they are not state functions. See how the ideal gas law can be used to calculate the work done by a piston.

34 min
Energy Transferred and Conserved

06: Energy Transferred and Conserved

Discover that the values for work and heat in a given system depend on the path taken to get to a particular state. But note that the sum of work and heat does not depend on the path; it is a constant. This remarkable fact is the foundation of the first law of thermodynamics.

31 min
Work-Heat Equivalence

07: Work-Heat Equivalence

Witness examples of energy transforming from one type to another-from mechanical to heat. First, see how the ideal gas law can be used to ignite a piece of cotton. Then, witness how soup can be made piping hot by rapid mixing. Also, probe the concepts of reversibility and irreversibility.

30 min
Entropy-The Arrow of Time

08: Entropy-The Arrow of Time

Probe the connection between entropy and the second law of thermodynamics, which states that all real processes tend to increase the entropy of the universe. Explore some important consequences of the law, including the fact that time flows in only one direction.

32 min
The Chemical Potential

09: The Chemical Potential

Study molar and partial molar quantities, which are indispensable for describing what happens when materials are combined. Focus on the case of water mixed with ethanol, which adds up to a surprising volume. These ideas lead to one of the most important variables in thermodynamics: chemical potential.

33 min
Enthalpy, Free Energy, and Equilibrium

10: Enthalpy, Free Energy, and Equilibrium

Define the Gibbs free energy, which is closely related to entropy and allows the determination of equilibrium for systems under realistic experimental conditions. Then encounter a related variable, enthalpy, which is useful when discussing constant pressure processes.

30 min
Mixing and Osmotic Pressure

11: Mixing and Osmotic Pressure

Marvel at the power of osmosis by investigating the thermodynamic force that drives a liquid to flow from one side of a barrier to another. This force is called the chemical potential gradient, and it has wide application in performing work, from desalinating water to generating electricity.

30 min
How Materials Hold Heat

12: How Materials Hold Heat

Learn how different materials vary in their ability to absorb heat. This factor is called heat capacity, and it provides a crucial way to correlate energy flow with temperature. Study the heat capacity of various materials, and see how quantum effects reduce heat capacity at very low temperatures.

31 min
How Materials Respond to Heat

13: How Materials Respond to Heat

Turn to the problem of thermal energy flow and volume. This phenomenon causes materials to expand when heated and contract when cooled. Analyze these events at the atomic scale, and study the unusual behavior of water when it freezes-an attribute that is essential to life as we know it.

30 min
Phases of Matter-Gas, Liquid, Solid

14: Phases of Matter-Gas, Liquid, Solid

Investigate the properties of different materials as they change phase from solid to liquid to gas. Witness the surprising behavior of supercooled water, and discover that phase diagrams are an important tool for predicting how temperature and pressure determine when phase transitions occur.

31 min
Phase Diagrams-Ultimate Materials Maps

15: Phase Diagrams-Ultimate Materials Maps

Why does ice melt above 0°C? Why does water boil above 100°C? What quantity governs the equilibrium between liquid and gaseous phases? Use phase diagrams to probe these and other questions. Also watch a stunning demonstration of the triple point, where freezing and boiling occur simultaneously!!

32 min
Properties of Phases

16: Properties of Phases

Dig deeper into the properties of phases and phase diagrams. First, see how a flask of water can be made to boil by cooling it. Then, explore why a curve in a phase diagram has a certain slope. Close with a multicomponent phase diagram that explains why salt causes ice to melt.

30 min
To Mix, or Not to Mix?

17: To Mix, or Not to Mix?

Explore the phenomenon of mixing-a crucial process for any situation where the product is composed of more than one material. Focus on the case of oil and water, which are notoriously unmixable, and discover what keeps them separate at the molecular level.

31 min
Melting and Freezing of Mixtures

18: Melting and Freezing of Mixtures

Apply phase diagrams to the analysis of phase transitions of mixtures. Find that a mixture of two different components often has surprising properties. Learn why solder and other eutectic materials melt at a dramatically lower temperature than do their constituent substances.

29 min
The Carnot Engine and Limits of Efficiency

19: The Carnot Engine and Limits of Efficiency

Study heat engines and their design limits for converting heat into work. The maximum possible efficiency in a heat engine is defined by the Carnot engine, an unattainable ideal whose properties illustrate the second law of thermodynamics.

30 min
More Engines-Materials at Work

20: More Engines-Materials at Work

Evaluate four other approaches to generating work from thermodynamic forces: magnetism, phase change, entropy, and surface tension. These unusual engines demonstrate the many different ways to produce mechanical energy from the unique properties of materials.

34 min
The Electrochemical Potential

21: The Electrochemical Potential

Use a classic science fair project-the potato battery-to trace the source of the electron flow that makes batteries so indispensable to modern life. In the process, learn about the electrochemical potential, which describes the underlying thermodynamics of any system in which chemical reactions are occurring together with charged particles.

31 min
Chemical Reactions-Getting to Equilibrium

22: Chemical Reactions-Getting to Equilibrium

Chemical reactions are fundamentally part of everything we do. Learn how the concepts of thermodynamics reveal when a reaction will occur, and when it will not. Focus on the famous Haber process, which transformed agriculture by allowing nitrogen to be easily extracted from the atmosphere.

31 min
The Chemical Reaction Quotient

23: The Chemical Reaction Quotient

Continue your study of chemical reactions by contrasting two different types of reactions, shedding light on a crucial factor called the reaction quotient. In the first reaction, study pure compounds reacting together. Then look at dissolved compounds reacting. Learn how to compute the reaction quotient at any concentration.

34 min
The Greatest Processes in the World

24: The Greatest Processes in the World

Review the major concepts covered in the course. Then look ahead at innovative technologies that may help solve the world's urgent energy and fresh water needs. These promising processes rely on the design of new materials, which can only be achieved through a deep understanding of thermodynamics.

35 min