You updated your password.

Reset Password

Enter the email address you used to create your account. We will email you instructions on how to reset your password.

Forgot Your Email Address? Contact Us

Reset Your Password


The Higgs Boson and Beyond

Join the hunt for a mysterious particle (first name: Higgs, last name: boson) that could explain, once and for all, the nature of our universe.
The Higgs Boson and Beyond is rated 4.6 out of 5 by 218.
  • y_2022, m_5, d_23, h_21
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.27
  • cp_1, bvpage1
  • co_hasreviews, tv_22, tr_196
  • loc_en_CA, sid_1205, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getAggregateRating, 73.31ms
Rated 5 out of 5 by from Perfect title. Marvelous background to a layman's understanding of the background information that is needed in order to understand what the Higgs boson, the Higgs field, and the Higgs mechanism are. Absolutely terrific presentation of a massively important development. Please also note that this same lecturer has a series on "dark matter and Dark Energy, and that series fits right into the Higgs developments. Don't miss this!!!
Date published: 2022-05-10
Rated 5 out of 5 by from Great Visuals Very informative and richly illustrated and for the most part easy to follow but the part on breaking parity may require more than one viewing.
Date published: 2022-04-23
Rated 5 out of 5 by from Best TGC course I have ever watched. Sean Carrol is an excellent lecturer. I continue to be fascinated by particle physics and this course is my favorite so far. The graphics are entertaining and Mr. Carrol's command of the course subject is obvious and impressive!
Date published: 2022-02-27
Rated 5 out of 5 by from Very Interesting I have always been fascinated by physics. Dr. Carroll is an excellent instructor with a difficult subject. With little background in physics I did find it hard to follow at times. However, I love learning new things. This course makes me want to learn more about the subject.
Date published: 2021-12-20
Rated 5 out of 5 by from Entertaining Presentation Dr. Carroll's animated presentation was great. Generally easy to follow.
Date published: 2021-12-15
Rated 5 out of 5 by from The professor is great and makes a difficult subject much easier to understand! Thank you professor Carroll!
Date published: 2021-10-13
Rated 5 out of 5 by from Sean Carroll once again shining In my opinion, Prof Carroll is the foremost physic educator around today. He explains the subject in a logical, methodical, cheery way. His passion for physics is infectious, and he strikes the right balance between simplicity and more advanced concepts. Finally starting to feel like I have an understanding of the Higgs mechanism.
Date published: 2021-07-23
Rated 2 out of 5 by from Pre-existing knowledge crucial The lecturer is pleasant to listen to and some examples are very well presented. However, if you do not have a significant knowledge of physics already, you will struggle. Too many things don't get explained enough or at all. New things get introduced very late in the course (lecture 10 out of 12) but not explained. All in all, not good.
Date published: 2021-07-04
  • y_2022, m_5, d_23, h_21
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.27
  • cp_1, bvpage1
  • co_hasreviews, tv_22, tr_196
  • loc_en_CA, sid_1205, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 384.77ms


Understand one of the most exciting scientific discoveries of our time with this fascinating short course that explains the science behind the hunt for the Higgs boson.


Sean Carroll

We need to push on our understanding of cosmology, particle physics, gravity, not to mention how complexity and entropy evolve through time, and eventually you'll be able to really understand what our theories predict.


California Institute of Technology

Professor Sean Carroll is a Senior Research Associate in Physics at the California Institute of Technology. He earned his undergraduate degree from Villanova University and his Ph.D. in Astrophysics from Harvard in 1993. Before arriving at Caltech, Professor Carroll taught in the Physics Department and the Enrico Fermi Institute at the University of Chicago, and did postdoctoral research at the Massachusetts Institute of Technology and at the Institute for Theoretical Physics at the University of California, Santa Barbara. Professor Carroll is the author of Spacetime and Geometry: An Introduction to General Relativity, published in 2003. He has taught more than 200 scientific seminars and colloquia and given more than 50 educational and popular talks. In addition, he has written for numerous publications including Nature, New Scientist, The American Scientist, and Physics Today. Professor Carroll has received research grants from NASA, the U.S. Department of Energy, and the National Science Foundation, as well as fellowships from the Sloan and Packard foundations. He has been the Malmstrom Lecturer at Hamline University, the Resnick Lecturer at Rensselaer Polytechnic Institute, and a National Science Foundation Distinguished Lecturer. While at MIT, Carroll won the Graduate Student Council Teaching Award for his course on general relativity. In 2006 he received the Arts and Sciences Alumni Medallion from Villanova University.

By This Professor

Mysteries of Modern Physics: Time
The Higgs Boson and Beyond
The Higgs Boson and Beyond


The Importance of the Higgs Boson

01: The Importance of the Higgs Boson

Why was the discovery of the Higgs boson such a big deal? That's the key question that Professor Carroll tackles in his illuminating introduction. Take a fascinating dive into the world of modern particle physics and see how the Higgs is the missing piece of a scientific puzzle that helps us understand the "rules" for the universe.

33 min
Quantum Field Theory

02: Quantum Field Theory

Toss out the textbook image of electrons circling an atom's nucleus. This lecture explores the big twist of quantum field theory: The world isn't really made of particles. They're fascinating and necessary figments of quantum mechanics created by observing the fields that fill every inch of the universe, and grasping that eye-opening concept is essential to understanding the Higgs.

32 min
Atoms to Particles

03: Atoms to Particles

Now that you know what particles really are, it's time to walk through the "particle zoo" and explore the roles of photons, gluons, and quarks. Along the way, Professor Carroll looks back on the development of the Standard Model and how our changing understanding of the weak nuclear field suggested the existence of the Higgs years before we found it.

31 min
The Power of Symmetry

04: The Power of Symmetry

Symmetries don't only apply to geometrical objects. They apply to the laws of physics themselves. In this lecture, you may feel your mind twist in asymmetrical ways as you explore how symmetry governs the known forces of nature and how it helped form a wild theory that an as-yet-undiscovered particle-the Higgs-must exist.

31 min
The Higgs Field

05: The Higgs Field

With the basics of particle physics covered, Professor Carroll walks us through the decades-long hunt for the Higgs. You'll meet the many brilliant minds-Anderson, Englert, and Higgs among them-who determinedly set out to solve the mystery of the weak nuclear field. You'll also discover why Angelina Jolie is like a top quark.

33 min
Mass and Energy

06: Mass and Energy

In this lecture, "classical" physics, as explained by Newtonian and Einsteinian mechanics, provides insight into what makes the Higgs so special. Uncover the key to the Higgs's uniqueness in the particle zoo-that even at its minimum energy state (its "resting" state), the Higgs field has a large, constant value.

31 min
Colliding Particles

07: Colliding Particles

Once physicists established the need for the Higgs boson to exist, how did they set out to locate it? It was just a matter of bringing the particles and fields together under the right conditions. You'll see how physicists use Feynman diagrams to keep track of how virtual particles carry the various forces between quarks and leptons.

31 min
Particle Accelerators and Detectors

08: Particle Accelerators and Detectors

Want to build your own particle accelerator? You'll need a lot of money, a lot of room, and the information that Professor Carroll shares in this lecture. You'll learn that particle accelerators aren't simply "atom smashers." They bring into existence new particles that weren't there before.

32 min
The Large Hadron Collider

09: The Large Hadron Collider

If blacksmithing were like particle physics, the Large Hadron Collider would be the anvil. Seventeen miles around and representing the unprecedented cooperation of scientists worldwide over the course of years, the LHC is a remarkable achievement. Explore its construction, capabilities, and amazing promise for the future of physics.

32 min
Capturing the Higgs Boson

10: Capturing the Higgs Boson

Looking for a needle in a haystack? Try looking for a never-before-seen particle in the largest machine ever built. With the LHC complete, the search for the Higgs began in earnest, and particle physics combined with probability to find the missing piece in the Standard Model puzzle. Professor Carroll describes both the exciting hunt and the key players in the amazing discovery.

31 min
Beyond the Standard Model of Particle Physics

11: Beyond the Standard Model of Particle Physics

Now that the Higgs boson has been found, everything is answered, right? Not quite. Professor Carroll says the properties of the Higgs suggest that something else is at work out there. Moreover, the Higgs boson can be a stepping-stone to our exploration of dark matter, extra dimensions, the asymmetry of matter and antimatter, and a Grand Unified Theory of particle physics.

32 min
Frontiers-Higgs in Space

12: Frontiers-Higgs in Space

The Standard Model explains the forces and molecules that comprise us and everything with which we interact. But even with the Higgs, we can't explain the stuff that makes up 95% of the universe: dark matter and dark energy. In his conclusion, Professor Carroll shines a light on dark matter, its relationship with the Higgs, and the wonderful mysteries still ahead.

34 min