You updated your password.

Reset Password

Enter the email address you used to create your account. We will email you instructions on how to reset your password.

Forgot Your Email Address? Contact Us

Reset Your Password

SHOW
SHOW

Einstein’s Legacy: Modern Physics All around You

Reveal the extraordinary physics in ordinary life.
Einstein’s Legacy: Modern Physics All around You is rated 4.1 out of 5 by 23.
  • y_2024, m_3, d_27, h_9
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.38
  • cp_1, bvpage1
  • co_hasreviews, tv_2, tr_21
  • loc_en_CA, sid_10200, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getAggregateRating, 4.97ms
  • REVIEWS, PRODUCT
Rated 5 out of 5 by from Great survey of physics and modern technology This is a short survey of physics and its application to modern technology, such as cell phones, digital cameras, atomic clocks, GPS, lasers, magnets, smoke detectors, and cryptography. Not only does Professor Orzel explain how these gadgets work, but he also introduces some of the physicists who helped develope them, such as Einstein, de Broglie, Pauli, Schrodinger, Heisenberg, Bohr, Bell, and Rutherford. Very interesting and well worth the money.
Date published: 2023-08-27
Rated 5 out of 5 by from An excellent overview! I really enjoyed learning about the important discoveries and achievements of Einstein and his counterparts that pioneered the field of quantum mechanics. The professor emphasizes the relationship between the science and everyday phenomena we can all relate to. In the section on entanglement I was hoping to learn more about how role of the wave function in the experiments and subsequent analysis. I highly recommend this course to all that have an interest in learning more about the amazing field.
Date published: 2023-05-26
Rated 3 out of 5 by from Hard work As with many TGC Courses, it is best to review the lecture summaries on their website before purchasing. Having some knowledge of Physics and Chemistry, plus having got a few TGC Courses on Einstein, I decided to give this one a ‘go’. Probably not the best choice I have ever made. CO is very clear in his presentation, and most of the graphics are first class. Where the Course fails, I think, is spending 80/90% of each lecture on the Physics and only the smaller portion on real-life applications. The best, in my opinion, is Lecture 4 which delves into the details of GPS navigation technology.
Date published: 2023-03-31
Rated 4 out of 5 by from Engaging coverage of deeply technical concepts. I found the lecturer articulate, engaging and humorous. Since I have a technical background in physics, I was pleased with how he connected the dots in the various basic concepts with everyday examples. Even though I knew most of the technical background, I loved the connections he made to the real-world, I recommend this course highly to the non-technical, but scientifically curious individual.
Date published: 2023-03-14
Rated 4 out of 5 by from A Useful Revision for the Intermediate Student. Make no mistake, this course is difficult and not for the beginner. A good deal of prior knowledge is essential because it tends to be a digest of quite complex issues. It will replay several listenings. The Professor has a habit of staring off-camera for as much as a third of the time when he is delivering the lectures. This is most disconcerting and distracting giving the impression of being "shifty". Look me in the eye !
Date published: 2022-12-29
Rated 5 out of 5 by from Very clear presentation I found this course to be very well presented, with good explanations of modern physics. The guidebook is quite thorough. I have a strong background in physics, but this course should be accessible to most users.
Date published: 2022-09-09
Rated 5 out of 5 by from Good (short) Course This course explained in non-mathematical terms the many ways Einstein's genius has affected our everyday lives. I was familiar with many of the examples, but the professor was very clear in his explanations. I especially enjoyed his treatment of quantum physics as related to our cell phones and his treatment of the GPS system and the coordination of clocks as it concerns special relativity. I got just what I expected in this course!
Date published: 2022-07-13
Rated 5 out of 5 by from I love this store I have so many courses stored in my library! All the ones I have completed were money well spent. This is a GREAT resource
Date published: 2022-07-12
  • y_2024, m_3, d_27, h_9
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.38
  • cp_1, bvpage1
  • co_hasreviews, tv_2, tr_21
  • loc_en_CA, sid_10200, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 3.86ms
  • REVIEWS, PRODUCT

Overview

Taught by Professor Chad Orzel of Union College, this course takes an unusual approach to teaching quantum mechanics and relativity. Designed for non-scientists, the 12 lectures focus on how quantum theory and relativity explain the workings of everyday objects—from toaster to computer chips to smoke alarms, and much more. Using no math, the explanations are detailed and often delightful.

About

Chad Orzel

Quantum physics affects everything that we do. I hope knowing this inspires you to look at the world anew and find a bit of wonder in the most mundane activities.

INSTITUTION

Union College

Chad Orzel is an Associate Professor of Physics and Astronomy at Union College in Schenectady, NY. He earned a BS in Physics from Williams College and a PhD in Chemical Physics from the University of Maryland, College Park. In addition to teaching and conducting research, he is the author of several books explaining physics to nonscientists. His first book, How to Teach Quantum Physics to Your Dog, has been translated into more than a dozen languages. Subsequent books include How to Teach Relativity to Your Dog; Eureka: Discovering Your Inner Scientist; Breakfast with Einstein: The Exotic Physics of Everyday Objects; and A Brief History of Timekeeping: The Science of Marking Time, from Stonehenge to Atomic Clocks. He also maintains a blog about science (among other topics) at ChadOrzel.com, contributes to Forbes online, and writes on Substack. In 2021, he was named a fellow of the American Physical Society.

By This Professor

Einstein’s Legacy: Modern Physics All around You
854
Einstein’s Legacy: Modern Physics All around You

Trailer

Toasters, Planck, and Modern Physics

01: Toasters, Planck, and Modern Physics

Any time you see a heating element glow as you toast a slice of bread, you are looking at the phenomenon that gave birth to quantum physics. Begin your study of the relevance of modern physics to everyday life by probing Max Planck’s formulation of the quantum hypothesis at the turn of the 20th century. Planck’s ideas explain why your toaster doesn’t kill you with high-energy radiation!

26 min
Cameras and Einstein’s Photoelectric Effect

02: Cameras and Einstein’s Photoelectric Effect

Albert Einstein won the Nobel Prize in Physics, not for his theory of relativity, but for his explanation of the photoelectric effect. Learn how his startling proposal that light is composed of a stream of particles (later called photons) overthrew the view that light is exclusively a wave. Discover that photons and the photoelectric effect are behind the operation of digital cameras.

24 min
Modern Clocks and the Bohr Atom

03: Modern Clocks and the Bohr Atom

In 1913, Niels Bohr proposed a model of the atom that allowed physicists to predict atomic properties that had previously been completely mysterious. As a bonus, Bohr’s model provides the conceptual foundation for timekeeping using atomic clocks, where the “ticking” is the oscillation of light. Study the workings of these super-accurate devices that are good to a second in a hundred million years.

24 min
GPS and Einstein’s Relativity

04: GPS and Einstein’s Relativity

Delve into the principle of relativity, first proposed by Galileo Galilei and later extended by Einstein to account for inconsistencies in the interpretation of electromagnetic phenomena. See how Einstein’s special theory of relativity was the result, with astonishing consequences for our understanding of time and space. The Global Positioning System (GPS) would be hopelessly inaccurate without it.

22 min
Elevators Demonstrate General Relativity

05: Elevators Demonstrate General Relativity

Continue deeper into relativity by exploring Einstein’s general theory of relativity, which treats gravity as indistinguishable from a simple accelerating reference frame—for example, an elevator that is speeding up or slowing down. From this insight, Einstein developed a theory with truly staggering implications, such as that space and time alter in the presence of massive objects.

23 min
Lasers, the Internet, and Photon Emission

06: Lasers, the Internet, and Photon Emission

The internet relies on Einstein’s theory of stimulated emission of radiation, along with the later work of physicists who turned the idea into a practical invention, namely the laser. Follow a single photon in a laser as it multiplies, forming a tight, concentrated beam. Then study the role of fiber optic cables in guiding laser digital signals throughout our global telecommunications network.

24 min
A Sense of Smell Relies on Pauli Exclusion

07: A Sense of Smell Relies on Pauli Exclusion

Starting with the aroma of freshly brewed coffee, zero in on the nose’s chemical receptors that mediate smell. Consider the quantum effects involved—notably Wolfgang Pauli’s theory of electron spin and his exclusion principle, which together dictate how electrons fill energy states within the atom. The grouping of electrons in the outermost shell determines essentially all of chemistry.

24 min
Why Everyday Objects Don’t Implode

08: Why Everyday Objects Don’t Implode

Given the overwhelming amount of empty space in atoms, what accounts for the stability of solid objects? Shouldn’t they implode at the slightest touch? Chart the search by Erwin Schrödinger, Werner Heisenberg, and others for an explanation. Discover that the physics that lets you set down a cup safely also governs the most exotic matter in the universe—the material making up a neutron star.

24 min
Computers and Schrödinger’s Cat

09: Computers and Schrödinger’s Cat

Learn the link between Schrödinger’s famous cat paradox and the microelectronics revolution. In the paradox, a cat is simultaneously both dead and alive due to the indeterminate nature of an atomic process on which the feline’s fate depends. See how the physics of superposition—as this state is known—is essential to the behavior of everyday objects and plays a crucial role in computer circuits.

25 min
Magnets Need the Quantum World

10: Magnets Need the Quantum World

Einstein was understandably entranced by magnets since the behavior of permanent magnets is so hard to explain. Dive into the quantum world to discover why most atoms are non-magnetic, yet some—like iron—are prone to holding a long-lasting magnetic charge. Find that the Pauli exclusion principle once again is a key element. Also probe the surprising sophistication of refrigerator magnets.

23 min
Smoke Detectors and Quantum Tunneling

11: Smoke Detectors and Quantum Tunneling

A popular type of smoke detector relies on a tiny amount of radioactive material that undergoes alpha decay, allowing the identification of minute smoke particles in the air. Delve into the marvel of quantum tunneling which physicist George Gamow used to explain the otherwise baffling process of alpha decay. Also learn that Heisenberg’s famous uncertainty principle is a related concept.

26 min
The Future of Cryptography Is Entanglement

12: The Future of Cryptography Is Entanglement

Quantum physics provides a way to make codes that are completely uncrackable, thanks to a strange property first identified in one of Einstein’s failed attempts to overthrow the theory. Close the course by investigating the most bizarre quantum phenomenon of all: entanglement. Einstein called it “spooky action-at-a-distance,” yet it may one day safeguard your most private data from eavesdroppers.

28 min