Dark Matter, Dark Energy: The Dark Side of the Universe

Examine the key concepts of an expanding universe from Albert Einstein to Edwin Hubble, led by a theoretical physicist.
Dark Matter, Dark Energy: The Dark Side of the Universe is rated 4.7 out of 5 by 156.
  • y_2021, m_10, d_17, h_19
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.19
  • cp_1, bvpage1
  • co_hasreviews, tv_12, tr_144
  • loc_en_CA, sid_1272, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getAggregateRating, 7.55ms
  • REVIEWS, PRODUCT
Rated 5 out of 5 by from Dark Matter Dark Energy review I bought this because I am a novice on dark matter and dark energy. It seems very interesting, and I wanted to learn more about it. The Professor was very thorough. He broke the subjects down into accessible to lay persons. Some of the topics were difficult to understand, but overall it was a very good course that I would highly recommend.
Date published: 2021-10-02
Rated 4 out of 5 by from Great but old course The year that the Teaching Company produces a course is a closely guarded marketing secret, but can be learned by buying the course and then looking at the Course Guidebook. This one is Copyrighted 2007. That said, some of the best TC courses were produced years ago, and this is an excellent example. Sean Carroll is a superb explainer, and does a beautiful job in developing the concepts of dark matter and dark energy in a cosmological context. The adjective “dark”, really meaning not detectable by looking at photons, is not his, and he makes clear what it does mean. I’d give an updated version of this course 5 stars, and happily pay for it, although I don’t know if the TC marketing gurus have figured that out.
Date published: 2021-09-08
Rated 5 out of 5 by from Awesome Course! Only half way through and really like this course! The written material from the download saves me time from taking notes. The instructor has an awesome way of explaining complex facts. I will be reviewing it again to further my understanding.
Date published: 2020-11-12
Rated 5 out of 5 by from Richer than the title implies Carroll is one of my favorite Teaching Company instructors. (You should also check out his podcast, Mindscape.) I just want to note that this course might better be understood as a course on cosmology with an interesting-grabbing title slapped on it. If you’ve ever wondered why the Teaching Company doesn’t have a course on the history of the universe, it turns out they do, and this is it. It’s just that it’s framed as giving you the background knowledge to understand dark matter and dark energy.
Date published: 2020-10-24
Rated 5 out of 5 by from Can not wait for a sequel Excellent course, each lecture is interesting and very entertaining
Date published: 2020-08-12
Rated 5 out of 5 by from What we can't see can inform us This is an excellent course. It was made prior to the Planck spacecraft launch and discovery of the Higgs boson, but both are mentioned. Doctor Carroll is a remarkably good instructor who not only tells us where we are and where we are headed, but also why the destination is important and the questions we should ask along the way. Finally, take heart those with limited math skills. If you can add 5%, 25%, and 70% and get 100%, you are mathematically qualified to understand this course.
Date published: 2020-08-03
Rated 5 out of 5 by from Very understandable The lectures are just the right length and not boring! Explanations are in language a non-astronamer, like myself can understand. Just wish I could figure out how to get closed captioning along with the lectures.
Date published: 2020-06-17
Rated 5 out of 5 by from Professionally presented!! Sean Carroll is one of the most engaged and knowledgeable teacher of difficult subjects in science: particle physics. It was a delight to learn this subject. It will be sensible to watch again because of my interest in such material.
Date published: 2020-04-29
  • y_2021, m_10, d_17, h_19
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.19
  • cp_1, bvpage1
  • co_hasreviews, tv_12, tr_144
  • loc_en_CA, sid_1272, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 4.82ms
  • REVIEWS, PRODUCT

Overview

Everything we can see with our eyes and with powerful instruments-everything we think of as atom-based matter-is only 5 percent of what we know exists. The rest of the contents of the cosmos is invisible to our current methods of detection-but something out there is holding galaxies and galaxy clusters together, and something else is causing space itself to fly apart. These invisible components are dark matter and dark energy, the most eagerly studied subjects in astronomy and particle physics today.

About

Sean Carroll
Sean Carroll

We need to push on our understanding of cosmology, particle physics, gravity, not to mention how complexity and entropy evolve through time, and eventually you'll be able to really understand what our theories predict.

INSTITUTION

California Institute of Technology

Professor Sean Carroll is a Senior Research Associate in Physics at the California Institute of Technology. He earned his undergraduate degree from Villanova University and his Ph.D. in Astrophysics from Harvard in 1993. Before arriving at Caltech, Professor Carroll taught in the Physics Department and the Enrico Fermi Institute at the University of Chicago, and did postdoctoral research at the Massachusetts Institute of Technology and at the Institute for Theoretical Physics at the University of California, Santa Barbara. Professor Carroll is the author of Spacetime and Geometry: An Introduction to General Relativity, published in 2003. He has taught more than 200 scientific seminars and colloquia and given more than 50 educational and popular talks. In addition, he has written for numerous publications including Nature, New Scientist, The American Scientist, and Physics Today. Professor Carroll has received research grants from NASA, the U.S. Department of Energy, and the National Science Foundation, as well as fellowships from the Sloan and Packard foundations. He has been the Malmstrom Lecturer at Hamline University, the Resnick Lecturer at Rensselaer Polytechnic Institute, and a National Science Foundation Distinguished Lecturer. While at MIT, Carroll won the Graduate Student Council Teaching Award for his course on general relativity. In 2006 he received the Arts and Sciences Alumni Medallion from Villanova University.

By This Professor

Mysteries of Modern Physics: Time
854
The Higgs Boson and Beyond
853
Fundamental Building Blocks

01: Fundamental Building Blocks

Scientists now have a complete inventory of the universe, which is composed of three basic constituents: Ordinary matter includes every kind of particle ever directly observed; dark matter consists of massive particles known only because of their gravitational effects; and dark energy is a smoothly distributed component that whose density does not change as the universe expands....

33 min
The Smooth, Expanding Universe

02: The Smooth, Expanding Universe

Imagine looking into a clear night sky with perfect vision. What would you see? This lecture surveys the visible universe-from the stars in our galaxy to the cloudy patches called nebulae that astronomer Edwin Hubble proved are galaxies in their own right-and Hubble's discovery that the universe is expanding....

30 min
Space, Time, and Gravity

03: Space, Time, and Gravity

Einstein taught us that space and time can be combined into spacetime, which has the ability to evolve and grow. Indeed, what we think of as gravity is just a manifestation of the curvature of spacetime. To find things in the universe-including dark matter and dark energy-all we have to do is to map out this curvature....

30 min
Cosmology in Einstein's Universe

04: Cosmology in Einstein's Universe

The expansion of the universe is governed by its spatial curvature and energy density, both of which have specific ways of changing as the universe grows. These features are related to each other by Einstein's general theory of relativity, which can be used to model the past and possible future of the universe....

30 min
Galaxies and Clusters

05: Galaxies and Clusters

Applying the laws of dynamics to galaxies and galaxy clusters, we find that more matter is required to account for their motions than can be observed. Some of the missing mass is hot gas; however, this is still not enough, and we need to invoke some new kind of particle in galaxies and clusters: dark matter....

31 min
Gravitational Lensing

06: Gravitational Lensing

Another way to detect invisible matter is to use light as a probe of the gravitational field. Passing through curved spacetime, the path of a light ray is deflected due to gravitational lensing. Lensing demonstrates the existence of gravitational fields where there is essentially no ordinary matter....

31 min
Atoms and Particles

07: Atoms and Particles

We peer into the atom to discover the constituents of ordinary matter: nuclei and electrons. Nuclei are made of protons and neutrons, which in turn are made of quarks. Electrons and quarks are examples of fermions, or matter particles. There are also bosons, or force-carrying particles, such as photons and gluons....

31 min
The Standard Model of Particle Physics

08: The Standard Model of Particle Physics

In the 1960s and 1970s, physicists developed a comprehensive theory of known fermions and bosons. Now called the standard model, this theory fits an impressive amount of data, but it leaves two crucial puzzles: the hypothetical Higgs boson and the graviton, the carrier of the gravitational force....

31 min
Relic Particles from the Big Bang

09: Relic Particles from the Big Bang

Armed with the core principles of particle physics, we know enough about the early universe to predict how many of each type of particle should be left over from the Big Bang. These "relic abundances" are crucial to understanding the origin of dark matter and light elements....

31 min
Primordial Nucleosynthesis

10: Primordial Nucleosynthesis

The process of nucleosynthesis describes how protons and neutrons were assembled into light elements during the first few minutes after the Big Bang. We can observe these primordial elements today and check on Einsteinian cosmology and a stringent constraint on theories of dark matter....

31 min
The Cosmic Microwave Background

11: The Cosmic Microwave Background

About 380,000 years after the Big Bang, the universe had cooled sufficiently for electrons and nuclei to combine into atoms allowing light to travel much more freely. The relic photons from this era are visible to us today as the cosmic microwave background, which holds clues to the composition and structure of the universe....

31 min
Dark Stars and Black Holes

12: Dark Stars and Black Holes

Candidates for dark matter include small, dark stars called Massive Compact Halo Objects (MACHOs) and black holes. Such objects are ultimately composed of ordinary matter, of which there just isn't enough to account for the dark matter. We are forced to conclude that the dark matter is a new kind of particle....

31 min
WIMPs and Supersymmetry

13: WIMPs and Supersymmetry

Weakly interacting massive particles (WIMPs) are ideal candidates for what comprises dark matter. WIMPs may have their origins in supersymmetry, which posits a hidden symmetry between bosons and fermions, and predicts a host of new, as-yet-unobserved particles, including WIMPs....

32 min
The Accelerating Universe

14: The Accelerating Universe

In the late 1990s, two groups of astronomers found to their astonishment that the expansion of the universe is speeding up rather than slowing down. Such behavior can't be explained by any kind of matter and suggests the existence of an entirely new component: dark energy....

30 min
The Geometry of Space

15: The Geometry of Space

Precise measurements of the cosmic microwave background let us measure the total energy density of the universe by observing the geometry of space. We find that the energy in matter alone is not enough, confirming the need for dark energy....

30 min
Smooth Tension and Acceleration

16: Smooth Tension and Acceleration

Dark energy is smoothly distributed throughout the universe and its density is nearly constant, even though the universe is expanding. Unlike gas under pressure in a container, dark energy is a kind of "negative pressure"-or tension-that imparts an accelerated expansion to the universe....

31 min
Vacuum Energy

17: Vacuum Energy

The density and distribution of dark energy remain the same across all of space­time, but what exactly is dark energy? There are many possibilities, the simplest of which is vacuum energy-an constant amount of energy in every cubic centimeter of space itself. Vacuum energy is equivalent to Einstein's idea of the cosmological constant....

33 min
Quintessence

18: Quintessence

Another idea about dark energy is that it results from a new field in nature, analogous to the electromagnetic field but remaining persistent as the universe expands. This field is called quintessence. It would be observationally distinguishable from the cosmological constant....

30 min
Was Einstein Right?

19: Was Einstein Right?

We have inferred the existence of dark matter and dark energy from the gravitational fields they cause. In this lecture, we explore proposals that a modified theory of gravity might allow us to dispense with the need for invoking dark stuff. However, this turns out to be very difficult in practice....

32 min
Inflation

20: Inflation

Before we had observational evidence that the universe is accelerating, cosmologists considered the possibility of a period of rapid acceleration at very early times-a scenario known as inflation....

31 min
Strings and Extra Dimensions

21: Strings and Extra Dimensions

We know about the dark sector because of gravity, and string theory is an ambitious attempt to unify gravitation with the other forces of nature into a theory of everything. String theory promises a theory of quantum gravity, but it also predicts extra, unseen spatial dimensions that are difficult to test....

32 min
Beyond the Observable Universe

22: Beyond the Observable Universe

The speed of light and the age of the observable universe are finite. That means we can't see the whole universe because our vision can only stretch so far. The "multi­verse"-a hypothesis of regions where conditions are very different from those we see in our observable universe-may help explain properties of dark energy....

32 min
Future Experiments

23: Future Experiments

Astronomers are designing new observatories to probe the acceleration of the universe and other cosmic phenomena. Physicists are also looking forward to new experiments that will dramatically improve our understanding of particles and forces, and how ordinary matter fits in with dark matter and dark energy....

32 min
The Past and Future of the Dark Side

24: The Past and Future of the Dark Side

The concordance cosmology is an excellent fit to a variety of data, but it presents us with deep puzzles: What are dark matter and dark energy? Why do they have the densities they do? Our own universe seems unnatural to us. That's good news, as it is a clue to the next level of understanding....

34 min